BVRIT HYDERABAD
 College of Engineering for Women

Approved by AICTE and Affiliated to JNTUH, Hyderabad
Accredited by NBA \& NAAC (A Grade)
Rajiv Gandhi Nagar, Bachupally, HYDERABAD - 500090
Telangana, India

COURSE CONTENT	
Department	Basic Sciences and Humanities
Year/Semester	I B.Tech. / II Semester
Subject	Ordinary differential equations \& Vector calculus
Regulation	R22

VISHNU
 UNIVERSAL LEARNING

VISION

To emerge as the best among the institutes of technology and research in the country dedicated to the cause of promoting quality technical education.

MISSION

At BVRITH, we strive to

- Achieve academic excellence through innovative learning practices.
- Enhance intellectual ability and technical competency for a successful career.
- Encourage research and innovation.
- Nurture students towards holistic development with emphasis on leadership skills, life skills and human values.

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS
 (Common to ECE, EEE, IT, CSE)
 B.Tech. I Year II Sem

Pre-requisites: Mathematical Knowledge at pre-university level Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world
- problems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE (8 L)

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order (10 L)

Second and Higher order linear differential equations with constant coefficients, NonHomogeneous terms of the type $\sin a x, \cos a x, e^{a x}$, polynomials in $x, e^{a x} V(x)$ and $x V(x)$, Method of variation of parameters. Equations reducible to linear ODE with constant Coefficients, Legendre's equation and Cauchy-Euler equation. Applications : Electric Circuits.

UNIT-III: Laplace transforms ($\mathbf{1 0} \mathbf{L}$)

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by ' t ', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation (10 L)

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration (10 L)

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010 R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley \& Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.
4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

Course Outcomes

 VC	Course Outcomes	Bloom's Taxonomy
C121.1	Solve geometrical and physical problems using first order and first degree differential equations	Analyze
C121.2	Solve higher order linear differential equations with constant coefficients	Apply
C 121.3	Evaluate Laplace and inverse Laplace transforms of various functions	Apply
C 121.4	Apply Laplace Transforms to solve ordinary differential equations	Apply
C 121.5	Analyze the properties of Differential Operators	Analyze
C 121.6	Evaluate the line, surface, and volume integrals using their inter- relationships	Apply

BVRIT HYDERABAD
 College of Engineering for Women
 Bachupally, Hyderabad - 500090
 Department of Basic Science and Humanites
 B.Tech I Year LESSON PLAN

Course Code:
 Class: CSE/ECE/EEE/IT

Course Title : ODE \& VC
Academic Year : 2022-23

UNIT - I: First Order ODE

Exact, linear and Bernoulli's equations; Applications : Newton's law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p , equations solvable for y , equations solvable for x and Clairaut's type.

Session No.	Date	Topic Proposed to be Covered	Text /Referen ce Book	$\begin{gathered} \text { Chapter No. \& } \\ \text { Page No. } \end{gathered}$	Web Resources	COs Achieved
1		Differential equations: Introduction, Order, Degree and examples.	T1	$\begin{aligned} & \hline \mathrm{T} 1: 426-431 \\ & \mathrm{~T} 2: 8.1-8.3 \\ & \hline \end{aligned}$	1.nptel.ac.in/cour ses/122107037/	Solve ODE's by Analytical Methods
2		Exact differential equations: General form, Solution procedure, problems.	T1	$\begin{aligned} & \text { T1: 440-442 } \\ & \text { T2: 8.9-8.11 } \end{aligned}$		
3		Non exact differential equations: 6 cases of finding Integrating Factors.	T1	$\begin{aligned} & \text { T1: 442-445, } \\ & \text { T2: 8.11-8.17 } \end{aligned}$		
4		Non exact differential equations: finding Integrating Factors: contd..	T1	$\begin{aligned} & \text { T1: 442-445, } \\ & \text { T2: 8.11-8.17 } \end{aligned}$		
5		Practice problems	T1	$\begin{aligned} & \text { T1: 442-443, } \\ & \text { T2: 8.11-8.13 } \end{aligned}$		
6		Linear differential equations: General form, Solution procedure, problems.	T1	$\begin{array}{\|l\|} \hline \text { T1: 435-437 } \\ \text { T2: 8.18-8.21 } \\ \hline \end{array}$		
7		Bernoulli differential equations, problems.	T1	$\begin{aligned} & \hline \text { T1: 437-439 } \\ & \text { T2: 8.21-8.24 } \end{aligned}$	2.nptel.ac.in/cour ses/101108047/ module8/Lecture \%2017.pdf	
8		Practice Problems	T1			
9		Orthogonal Trajectories	T1	T1:455-457		
10		Orthogonal Trajectories	T1	T1:455-457		
11		Newtons Law of Cooling	T1	$\begin{aligned} & \hline \text { T1: 466-467 } \\ & \text { T2: 8.37-8.38 } \end{aligned}$		
12		Law of natural growth	T1			
13		Law of Decay	T1			
14		Practice Problems	T1			
15		Review of previous years question papers	T1			

	Tutorial	$\mathrm{T} 1, \mathrm{~T} 2$				
1		Activity- Quiz				

UNIT -II: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER

Second and Higher order linear differential equations with constant coefficients, Non-Homogeneous terms of the type $\sin a x, \cos a x, e^{a x}$, polynomials in $x, e^{a x} V(x)$ and $x V(x)$, Equations reducible to linear ODE with constant Coefficients, Legendre's equation and Cauchy-Euler equation.

16	Linear D. E.s of second order with constant coefficients: Introduction, solution procedure, 3 cases of Complementary function;	T1,T2	$\begin{aligned} & \mathrm{T} 1: 471-474, \\ & \mathrm{~T} 2: 9.1-9.8 \end{aligned}$	1.http://www.ma thway.com 2. nptel.ac.in/cours es/122107037/20	Model ODE Solve real time engineer problems.
17	Finding Particular integral when $\mathrm{Q}(\mathrm{x})$ $=e^{a x}$, sinax, cosax and problems.	T1,T2	$\begin{aligned} & \mathrm{T} 1: 475-477, \\ & \mathrm{~T} 2: 9.9-9.16 \end{aligned}$		
18	Finding Particular integral when $\mathrm{Q}(\mathrm{x})=x^{n}, V e^{a x}$ and problems.	T1,T2	$\begin{aligned} & \text { T1:478-486, } \\ & \text { T2:9.16-9.21 } \end{aligned}$		
19	Finding Particular integral when $\mathrm{Q}(\mathrm{x})=x V$ and problems.	T2	T2:9.21-9.25		
20	Problems on Complementary function and particular integral	T1,T2	$\begin{aligned} & \hline \text { T1: 486, } \\ & \text { T2:9.21-9.25 } \end{aligned}$		
21	Problems continued.	T1,T2	$\begin{array}{\|l\|} \hline \text { T1: 486, } \\ \text { T2:9.21-9.25 } \end{array}$		
22	Equations reducible to linear ODE with constant Coefficients:	T1,T2	$\begin{aligned} & \hline \text { T1:490-493, } \\ & \text { T2:9.25-9.28 } \end{aligned}$		
23	Problems continued.	T1,T2	$\begin{array}{\|l\|} \hline \text { T1:490-493, } \\ \text { T2:9.25-9.28 } \end{array}$		
24	Euler's or Cauchy's equation and problems.	T1,T2	$\begin{array}{\|l\|} \hline \text { T1:490-493, } \\ \text { T2:9.25-9.28 } \end{array}$		
25	Legendre's equation and problems.	T1,T2	$\begin{aligned} & \hline \mathrm{T} 1: 493-495, \\ & \mathrm{~T} 2: 9.28-9.29 \end{aligned}$		
26	Problems continued.	T1	T1:471-490,		

$\mathbf{2 7}$		Appications: Electric Circuits	T1	T1:514-515		
$\mathbf{2 8}$		Appications: Electric Circuits	T1	T1:514-515		
$\mathbf{2 9}$		Review of previous years question	T1, T2	T1:471-490, T2:73-74		
$\mathbf{3 0}$	papers	Tutorial	T2	T1:471-490, T2:73-74		
$\mathbf{2}$		Activity- Quiz				

UNIT-III: Laplace Transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by ' t ', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method

31	Basics of Laplace transforms	T1	T1:726	https://www.yout ube.com/watch?v =c9NibpoQjDk https://www.yout ube.com/watch?v $=$ JzaaQxkL6Ak	Able tosolve theordinarydifferentialequationsusingLaplaceTransforms
32	Laplace Transform of standard functions	T1	T1:727		
33	problems	T1	T1:731-732		
34	First shifting theorem	T1	T1:728		
35	Second shifting theorem	T1	T1:756		
36	Unit step function, Dirac delta function	T1	T1:756,761		
37	Laplace transforms of functions when they are multiplied and divided by ' t	T1	T1:735,737		
38	Laplace transforms of functions when they are multiplied and divided by ' t	T1	T1:735,737		
39	Laplace transforms of derivatives and integrals of function	T1	T1:735		
40	Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions	T1	T1:739,732		
41	Inverse Laplace transform by different methods	T1	T1:740-747		
42	Inverse Laplace transform by different methods	T1	T1:740-747		

$\left.\begin{array}{|l|l|l|c|c|c|c|}\hline \mathbf{4 3} & & \text { Convolution theorem } & \mathrm{T} 1 & \mathrm{~T} 1: 788-750\end{array}\right)$.

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions. Gradient, Divergence and Curl. Directional derivatives, Tangent plane and normal line. Vector Identities. Scalar potential functions. Solenoidal and Irrotational vectors.

48	Introduction about Vectors and their properties, applications	T1	T1:315-323	1.nptel.ac.in/cour ses/111106053/3 7 2. nptel.ac.in/cours es/115101005/do wnloads/lectures -doc/Lecture1.pdf	Apply knowledge of derivative to solve the problems in vector differentiati on
49	Scalar point function \&vector point function	T1			
50	Gradient their related properties	T1			
51	Directional derivatives	T1			
52	Tangent plane and normal line.	T1			
53	Divergence their related properties Solenoidal vector	T1	T1:324-333		
54	Curl their related properties irrotational vector	T1			
55	Finding Potential function	T1			
56	Laplacian operator	T1	T1:334-335		
57	Review of previous years question papers				
58	Tutorial	T1			
4	Activity - Chart Preparation				

UNIT-V: Vector Integration

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

59	Introduction to Vector integration and its applications	T1	T1:335-354	1.	Analyze the properties
60	Line integral, work done	T1			
61	Surface integrals	T1			
62	Volume integral	T1			

63	Green's Theorem and their related problems	T1	nptel.ac.in/cours es/104104086/4	of vector valued
64	Stoke's theorem(Without proof)and their related problems	T1		functions and their
65	Gauss's Divergence Theorems (Without nroof land their related	T1		applicatio ns to line,
66	Review of previous years question papers	T1, T2		surface \& volume
67	Tutorial			integrals
5	Activity- Mind Map			

TEXT BOOKS:

T_{1} B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, $36^{\text {th }}$ Edition, 2010
T_{2} Erwin kreyszig, Advanced Engineering Mathematics, ${ }^{\text {th }}$ Edition, John Wiley \& Sons, 2006
T_{3} G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, $9^{\text {th }}$ Edition, Pearson, Reprint, 2002.

REFERENCES:

R_{1}. Paras Ram, Engineering Mathematics, $2^{\text {nd }}$ Edition, CBS Publishes
R2. L. Ross, Differential Equations, $3{ }^{\text {rd }}$ Ed., Wiley India, 1984.

OTHER REFERENCE BOOKS:

O_{1}. Engineering Mathematics-2 by T.K.V. Iyengar, B.Krishna Gandhi \& Others, S.Chand, Vol1
O_{2}. Engineering Mathematics - II by T.K. V. Iyengar, B. Krishna Gandhi \& Others, S.Chand,Vol2

Signature of Faculty HOD

SOME USEFUL FORMULAE FROM INTERMEDIATE

TRIGNOMETRIC FORMULAE:

$\boldsymbol{\theta}$	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$	0	$1 / 2$	$1 / \sqrt{2}$	$\sqrt{3 / 2}$	1
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	$1 / 2$	0
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	∞

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\operatorname{cosec}^{2} x$
$\sin ^{2} x=\frac{1-\cos 2 x}{2}$
$\cos ^{2} x=\frac{1+\cos 2 x}{2}$
$\sin ^{3} x=\frac{1}{4}[3 \sin x-\sin 3 x] \cos ^{3} x=\frac{1}{4}[3 \cos x+\cos 3 x]$
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B 2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$2 \cos A \sin B=\sin (A+B)-\sin (A-B) 2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
$2 \sin A \sin B=\cos (A-B)-\cos (A+B)$
$\cosh a x=\frac{e^{a x}+e^{-a x}}{2}$
$\sinh a x=\frac{e^{a x}-e^{-a x}}{2}$

DIFFERENTIATION FORMULAE:

$\frac{d}{d x}(K)=0$
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$
$\frac{d}{d x}(\log x)=\frac{1}{x}$
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$

$$
\begin{aligned}
& \frac{d}{d x}(\sinh x)=\cosh x \\
& \frac{d}{d x}(\cosh x)=\sinh x \\
& \frac{d}{d x}(\tanh x)=\sec h^{2} x \\
& \frac{d}{d x}(\operatorname{coth} x)=-\operatorname{cosech}^{2} x \\
& \frac{d}{d x}(K u)=K \frac{d}{d x}(u) \\
& \frac{d}{d x}(u+v)=\frac{d}{d x}(u)+\frac{d}{d x}(v) \\
& \frac{d}{d x}(u v)=u \frac{d}{d x}(v)+v \frac{d}{d x}(u) \\
& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d}{d x}(u)-u \frac{d}{d x}(v)}{v^{2}} \\
& \frac{d}{d x} f[g(x)]=f^{\prime}[g(x)] \times g^{\prime}(x)
\end{aligned}
$$

Partial Differentiation

If $U(x, y)$ is a function of two variables then
(i) partial differentiation of $U(x, y)$ wrto x means partially differentiation of $U(x, y)$ considering y as constant. It is denoted $\frac{\partial U}{\partial x}$.
(ii) partial differentiation of $U(x, y)$ wrto y means partially differentiation of $U(x, y)$ considering x as constant. It is denoted $\frac{\partial U}{\partial y}$.

INTEGRATION FORMULAE:
$\int k d x=k x+c$
$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$
$\int \frac{1}{x} d x=\log |x|+c$
$\int \log x d x=x \log |x|-x+c$

$$
\begin{aligned}
& \int a^{x} d x=\frac{a^{x}}{\log a}+c \\
& \int e^{x} d x=e^{x}+c \\
& \int \sin x d x=-\cos x+c \\
& \int \cos x d x=\sin x+c \\
& \int \sec ^{2} x d x=\tan x+c \\
& \int \operatorname{cosec}^{2} x d x=-\cot x+c \\
& \int \sec x \tan x d x=\sec x+c \\
& \int \operatorname{cosec} x \cot x d x=-\cos e c x+c \\
& \int \tan x d x=-\log |\cos x|+c \text { or } \quad \log |\sec x|+c \\
& \int \cot x d x=\log |\sin x|+c \\
& \int \sec x d x=\log |\sec x+\tan x|+c \text { or } \log \left|\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right|+c \\
& \int \cos e c x d x=\log |\cos e c x-\cot x|+c \text { or } \log \left|\tan \frac{x}{2}\right|+c \\
& \int \sinh x d x=\cosh x+c \\
& \int \cosh x d x=\sinh x+c \\
& \int \tanh x d x=\log \cosh x+c \\
& \int \operatorname{coth} x d x=\log \sinh x+c \\
& \int \operatorname{sech}^{2} x d x=\tanh x+c \\
& \int \operatorname{cosech}{ }^{2} x d x=-\operatorname{coth} x+c \\
& \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+\mathrm{c} \text { or }-\cos ^{-1} x+\mathrm{c} \\
& \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c \text { or }-\cot ^{-1} x+c
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{x \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c \text { or }-\operatorname{cosec}^{-1} x+c \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \text { or }-\cos ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \text { or }-\frac{1}{a} \cot ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+c \text { or }-\frac{1}{a} \operatorname{cosec}^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\
& \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c \\
& \int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+c \\
& \int \sqrt{a^{2}-x^{2}} d x=\frac{x \sqrt{x^{2}-a^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \sqrt{x^{2}-a^{2}} d x=\frac{x \sqrt{x^{2}-a^{2}}}{2}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\
& \int \sqrt{x^{2}+a^{2}} d x=\frac{x \sqrt{x^{2}+a^{2}}}{2}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\
& \int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x) \\
& \int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)
\end{aligned}
$$

INTEGRATION BY PARTS:

Integration by parts is used in integrating product of functions of the type $f(x) \cdot g(x)$ as follows:
$\int\left(I^{s t}\right.$ function $\times I I^{n d}$ function $) d x=I^{s t}$ function $\int\left(I I^{n d}\right.$ function $) d x$

$$
-\int\left(\frac{d}{d x}\left(I^{s t} \text { function }\right) \times \int\left(I I^{n d} \text { function }\right) d x\right) d x
$$

Where the I^{st} and $\mathrm{II}^{\text {nd }}$ functions are decided in the order of ILATE;
I: Inverse trigonometric function
L: Logarithmic function
T: Trigonometric functions
A: Algebraic functions
E: Exponential Functions
I $\int\left[f_{1}(x) \pm f_{2}(x)\right] d x=\int f_{1}(x) d x \pm \int f_{2}(x) d x$
II $\int k \cdot f(x) d x=k \int f(x) d x$
III $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq-1$
$\int \frac{1}{a x+b} d x=\frac{\log |a x+b|}{a}+c$
$\int e^{a x+b} d x=\frac{e^{a x+b}}{a}+c$
$\int \sin (a x+b) d x=-\frac{\cos (a x+b)}{a}+c$ etc
IV $\int[f(x)]^{n} \cdot f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$
$\mathbf{V} \int\left(\frac{f^{\prime}(x)}{f(x)}\right) d x=\log |f(x)|+c$
VI $\int\left(\frac{f^{\prime}(x)}{\sqrt{f(x)}}\right) d x=2 \sqrt{f(x)}+c$
VII $\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c$
VIII $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+c$

Key points
 Unit I : Ordinary Differential Equations Of First Order And Of First Degree

Definition: An equation which involves differentials is called a Differential equation.
Ordinary differential equation: An equation is said to be ordinary if the derivatives have reference to only one independent variable.
(1) Partial Differential equation: A Differential equation is said to be partial if the derivatives in the equation have reference to two or more independent variables.

Order of a D.E equation: A Differential equation is said to be of order ' n ' if the $n^{\text {th }}$ derivative is the highest derivative in that equation.

Degree of a Differential equation: Degree of a D.Equation is the degree of the highest derivative in the equation after the equation is made free from radicals and fractions in its derivations.

Differential Equations of first order and first degree:

The general form of first order ,first degree DEquation is $\frac{d y}{d x}=f(x, y)$ or $[M d x+N d y=0$ Where M and N are functions of x and y$]$. There is no general method to solve any first order D.Equation. The equation which belong to one of the following types can be easily solved.

In general the first order D.Equation can be classified as:
1). Variable separable type
2). Homogeneous differential equation
3). Exact differential equations and
(a)equations reducible to exact equations.
(i) Integratin factor 1 (ii) Integrating Factor 2 (iii) Integrating Factor 3 (iv) Integrating Factor 4
4) Linear differential equation
(a) Bernoulli's linear differential equation.
(b) Equations reducible to linear form

Applications of first order and first degree differential equations:

1. Newton's law of cooling
2. Natural growth and Decay

I VARIABLE SEPARABLE:

If the D.equation $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ can be expressed of the form $\frac{d y}{d x}=\frac{f(x)}{g(y)}$ or $\mathrm{f}(\mathrm{x}) \mathrm{dx}-\mathrm{g}(\mathrm{y}) \mathrm{dy}=0$ where f and g are continuous functions of a single variable, then it is said to be of the form variable separable.

General soln of variable saparable is $\int f(x) d x-\int g(y) d y=\mathrm{c}$

II HOMOGENEOUS DIFFERENTIAL EQUATION:

The diff. eq. $\frac{d y}{d x}=f(x, y)$ where $f(k x, k y)=f(x, y)$ is said to be homogeneous.
Working rule: $\frac{d y}{d x}=f(x, y)----(1)$

$$
\begin{aligned}
& \text { purt } \mathrm{y}=\mathrm{vx} \text {, diff. wrt } \mathrm{x} \text { gives } \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \text { substituting above in (1), } v+x \frac{d v}{d x}=f(x, v x)
\end{aligned}
$$

on simplification of RHS, $v+x \frac{d v}{d x}=g(v)$

$$
\begin{aligned}
& \Rightarrow \quad x \frac{d v}{d x}=g(v)-v \\
& \Rightarrow \quad \frac{d v}{g(v)-v}=\frac{d x}{x}
\end{aligned}
$$

Integrating on both sides we get the required solution.

Exact Differential Equations:

Def: Let $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$ be a first order and first degree differential equation where
$M \& N$ are real valued functions of x, y. Then the equation $M d x+N d y=0$ is said to be an exact differential equation if \exists a function f such that.

$$
M=\frac{\partial f}{\partial x} \text { and } N=\frac{\partial f}{\partial y}
$$

Necessary and sufficient condition for Exactness: If $M(x, y) \& N(x, y)$ are two real functions which have continuous partial derivatives then the necessary and sufficient condition for the Differential equation $M d x+N d y=0$ is to be exact is that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

Working Rule : Consider $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$.
step 1 check $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
step 2 find $\mathrm{U}=\int^{x} M d x$ (i.e. integrate M partially wrt x i.e. considering y as constant)
step 3 find $V=\int[$ terms free from x in N$]$ dy
step 4 Final solution is $\mathrm{U}+\mathrm{V}=\mathrm{c}$, where c is a constant.

REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO EXACT USING INTEGRATING FACTORS

Definition: If the Non-exact differential equation $M(x, y) d x+N(x, y) d y=0$ can be made exact by multiplying it with a suitable function $\mathrm{f}(\mathrm{x}, \mathrm{y}) \neq 0$. Then this function is called an Integrating factor(I.F).
Some methods to find an I.F to a non-exact Differential Equation Mdx+N dy =0

Method-1: If $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$ is a homogeneous differential equation and $\mathrm{Mx}+\mathrm{Ny} \neq 0$, then $\frac{1}{M x+N y}$ is an integrating factor of $\mathrm{Mdx}+\mathrm{Ndy}=0$.
Method- 3: If the equation $M d x+N d y=0$ is of the form $y . f(x y) d x+x g(x y) d y=0$ (ie. $M=y$ $f(x y)$ and $N=x g(x y)) \& M x-N y \neq 0$ then $\frac{1}{M x-N y}$ is an integrating factor of $M d x+N d y=0$.

Method -3: If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)$ or K then I.F. is $e^{\int f(x) d x}$ or $e^{\int k d x}$
Method -4: If $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=g(y)$ or K then I.F. is $e^{\int g(y) d y}$ or $e^{\int k d y}$.

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER:

Def: An equation of the form $\frac{d y}{d x}+P(x) \cdot y=Q(x)$ is called a linear differential equation of first order in y.
Working Rule: To solve the liner equation $\frac{d y}{d x}+P(x) \cdot y=Q(x)$
step 1 Find find $\int p(x) d x$
step 2 Find the Integrating factor I.F $=e^{\int p(x) d x}$
step 3 Find $\int Q(x) e^{\int p(x) d x} d x$
step 4 General solution is $y e^{\int p(x) d x}=\int Q(x) e^{\int p(x) d x} d x+c$
Note: An equation of the form $\frac{d x}{d y}+P(y) x=Q(y)$ is called a linear differential equation of first order in x whose solution is $x e^{\int p(y) d y}=\int Q(y) e^{\int p(y) d y} d y+c$

BERNOULLI'S EQUATION :

(EQUATION'S REDUCIBLE TO LINEAR EQUATION)

Def: An equation of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ is called Bernoulli's linear differential equation, where $\mathrm{p} \& \mathrm{Q}$ are function of x and n is a real constant.

Working Rule: $\quad \frac{d y}{d x}+P(x) y=Q(x) y^{n}$
multiply the given equation (1) by $\mathrm{y}^{-\mathrm{n}}$

$$
\Rightarrow \quad y^{-{ }^{-n}} \cdot \frac{d y}{d x}+\mathrm{P}(\mathrm{x}) \cdot y^{1-n}=\mathrm{Q}
$$

Then take $y^{1-n}=\mathrm{u}$
(1-n) $y^{-n} \cdot \frac{d y}{d x}=\frac{d u}{d x}$
$\Rightarrow \quad y^{-n} \cdot \frac{d y}{d x}=\frac{1}{1-n} \frac{d u}{d x}$
Then equation (2) becomes

$$
\frac{1}{1-n} \frac{d u}{d x}+\mathrm{P}(\mathrm{x}) \cdot \mathrm{u}=\mathrm{Q}(\mathrm{x})
$$

$\frac{d u}{d x}+(1-\mathrm{n}) \mathrm{P}(\mathrm{x}) \mathrm{u}=(1-\mathrm{n}) \mathrm{Q}(\mathrm{x}) \quad$ which is linear in ' u ' and hence we can solve it.

EQUATIONS REDUCIBLE TO LINEAR EQUATION

Consider differential equation of the form $\quad f^{\prime}(y) \frac{d y}{d x}+P(x) f(y)=Q(x)$

$$
\begin{align*}
& \text { put } f(\mathrm{y})=\mathrm{u} \text { and } f^{\prime}(\mathrm{y}) \frac{d y}{d x}=\frac{d u}{d x} \text { in (1) } \tag{1}\\
& \frac{d u}{d x}+\mathrm{P}(\mathrm{x}) \mathrm{u}=\mathrm{Q}(\mathrm{x}) \text { which is linear in ' } \mathrm{u} \text { ' hence we can solve it. }
\end{align*}
$$

APPLICATION OF DIFFERENTIAL EQUATIONS OF FIRST ORDER NEWTON'S LAW OF COOLING

STATEMENT: The rate of change of the temp of a body is proportional to the difference of the temp of the body and that of the surrounding medium.

Let θ be the temp of the body at time ' t ' and θ_{0} be the temp of its surrounding medium(usually air). By the Newton's low of cooling, we have

$$
\frac{d \theta}{d t} \alpha\left(\theta-\theta_{0}\right) \text { i.e. } \frac{d \theta}{d t}=-k\left(\theta-\theta_{0}\right) \text { where } k \text { is constant }
$$

LAW OF NATURAL GROWTH OR DECAY

STATEMENT: Let $x(t)$ or x be the amount of a substance at time ' t ' and let the substance be getting converted chemically. A law of chemical conversion states that the rate of change of amount $x(t)$ of a chemically changed substance is proportional to the amount of the substance available at that time

$$
\begin{aligned}
& \frac{d x}{d t} \alpha x \\
& \frac{d x}{d t}=-k x(\text { in case of 'decay') } \\
& \frac{d x}{d t}=k x \quad(\text { in case of 'growth') }
\end{aligned}
$$

Where k is a constant of proportionality.

Unit II : HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Def: An equation of the form $\frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1}(\mathrm{x}) \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{P}_{2}(\mathrm{x}) \frac{d^{n-2} y}{d x^{n-2}}+\ldots-\ldots-\mathrm{P}_{\mathrm{n}}(\mathrm{x}) \cdot \mathrm{y}=\mathrm{Q}(\mathrm{x})$ Where $\mathrm{P}_{1}(\mathrm{x}), \mathrm{P}_{2}(\mathrm{x}), \mathrm{P}_{3}(\mathrm{x}) \ldots \ldots \ldots \mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{Q}(\mathrm{x})$ (functions of x) continuous is called a linear differential equation of order n.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS:

Def: An equation of the form $\frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1} \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{P}_{2} \frac{d^{n-2} y}{d x^{n-2}}+\cdots-\cdots+\mathrm{P}_{\mathrm{n}-1} \cdot \frac{d y}{d x}+\mathrm{P}_{\mathrm{n}} \cdot \mathrm{y}=\mathrm{Q}(\mathrm{x})$ where $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots . . \mathrm{P}_{\mathrm{n}}$, are real constants and $\mathrm{Q}(\mathrm{x})$ is a continuous functions of x is called an Linear differential equation of order ' n ' with constant coefficients.

Note:

1. Operator $\mathrm{D}=\frac{d}{d x} ; \mathrm{D}^{2}=\frac{d^{2}}{d x^{2}} ; \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{D}^{\mathrm{n}}=\frac{d^{n}}{d x^{n}}$
2. Operator $\frac{1}{D} Q(x)=\int Q(x) d x$

To find the general solution of $f(D) . y=0$:

Here $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+--------+P_{n}$ is a polynomial in D.
Consider the auxiliary equation (A.E.), $f(m)=0$

$$
\text { i.e } \mathrm{m}^{\mathrm{n}}+\mathrm{P}_{1} \mathrm{~m}^{\mathrm{n}-1}+\mathrm{P}_{2} \mathrm{~m}^{\mathrm{n}-2}+--------+\mathrm{P}_{\mathrm{n}}=0
$$

Let the roots be $m_{1}, m_{2}, m_{3}, \ldots . m_{n}$.
Depending on the nature of the roots we write the solution as follows:

Consider the following table

E.no	Roots of A.E f(m) =0	Solution
1.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are real and distinct.	$y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2}{ }^{x}}+\ldots+c_{n} e^{m_{n} x}$
2.	$\mathrm{m}_{1}, \mathrm{~m}_{2}$ are equal and $\operatorname{real}\left(\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}\right.$ i.e repeated twice) \& the rest are real and different.	$y=\left(c_{1}+c_{2} x\right) e^{m x}+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{1} x}$
	$\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are equal and real $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m} 3=\right.$ m i.e repeated thrice) \& the rest are real and different.	$y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{m x}+c_{4} e^{m_{4} x}+\ldots+c_{n} e^{m_{n} x}$
	Two roots are complex conjugate say $a \pm i b$ and rest are real and distinct.	$\mathrm{y}=e^{a x}\left(\mathrm{c}_{1} \cos b \mathrm{x}+\mathrm{c}_{2} \sin b \mathrm{x}\right)+\mathrm{c}_{3} \mathrm{e}^{\mathrm{m}_{3} \mathrm{x}}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{mnx}}$
4.	If $a \pm i b$ are repeated twice \& rest are real and distinct	$\begin{aligned} & \mathrm{y}=e^{a x}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \cos b \mathrm{x}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{x}\right) \sin b \mathrm{x}\right]+\mathrm{c}_{5} \mathrm{e}^{\mathrm{m}_{5} \mathrm{x}} \\ & +\ldots \ldots .+\mathrm{c}_{\mathrm{n}} \mathrm{e}_{\mathrm{m}}^{\mathrm{x}} \end{aligned}$

General solution of $f(D) y=\mathbf{Q}(x)$

Its solutions is given by $y=y_{c}+y_{p}$
Where y_{c} is called Complementary Function (C.F.), which is the general solutions of $f(D) y=0$
Where y_{p} is called Particular Integral (P.I.) defined by

$$
\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} Q(x)
$$

P.I. (1) of $f(D) y=Q(x)$ where $Q(x)=e^{a x}$ for (a) $\neq 0$

Case1: when $\mathrm{f}(\mathrm{a}) \neq 0$, P.I $=\frac{1}{f(D)} Q(x)=\frac{1}{f(D)} e^{a x}=\frac{1}{f(a)} e^{a x}$.
Case 2: whenIf $f(a)=0$ Then $f(D)=(D-a)^{k} \phi(D)$
(i.e ' a ' is a repeated root k times).

Then P.I $=\frac{1}{\mathrm{f}(\mathrm{D})} e^{a x}=\frac{1}{\phi(D)(\mathrm{D}-\mathrm{a})^{\mathrm{k}}} e^{a x}=\frac{1}{\phi(a)} \frac{x^{k}}{k!} e^{a x}$ provided $\phi(a) \neq 0$ where $\frac{1}{(D-a)^{k}} e^{a x}=\frac{x^{k}}{k!} e^{a x}$
P.I. (2) of $f(D) y=Q(x)$ where $Q(x)=\sin b x$ or $\cos b x$ where ' b ' is constant.

Case 1: $\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} \sin b x$
In $f(\mathrm{D})$ put $\mathrm{D}^{2}=-\mathrm{b}^{2}$ if $\phi\left(-\mathrm{b}^{2}\right) \neq 0$ where $f(\mathrm{D})=\phi\left(\mathrm{D}^{2}\right)$.
$\rightarrow y_{p}=\frac{1}{\alpha D+\beta} \sin b x$ where α, β are constants
\rightarrow rationalize the denominator and put $\mathrm{D}^{2}=-\mathrm{b}^{2}$ in the denominator
\rightarrow simplify the numerator using $\mathrm{D}=\frac{d}{d x}$.
Case 2: If if $\phi\left(-\mathrm{b}^{2}\right)=0$ then use the following two formulae:

$$
\begin{aligned}
& \frac{1}{D^{2}+b^{2}} \sin b x=-\frac{x}{2 b} \cos b x \\
& \frac{1}{D^{2}+b^{2}} \cos b x=\frac{x}{2 b} \sin b x
\end{aligned}
$$

P.I. (3) for $f(D) y=Q(x)$ where $Q(x)=x^{k}$ where k is a positive integer

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} x^{k} \\
\rightarrow & \operatorname{express} f(\mathrm{D})=[1 \pm \phi(\mathrm{D})] \\
\rightarrow & \frac{1}{f(D)} x^{k}=\frac{1}{[1 \pm \phi(\mathrm{D})]} x^{k}=[1 \pm \phi(\mathrm{D})]^{-1} x^{k}
\end{aligned}
$$

\rightarrow Then use the following formulae and $\mathrm{D}=\frac{d}{d x}$ to simplify the above

$$
\begin{aligned}
& (1-D)^{-1}=1+D+D^{2}+D^{3}+ \\
& (1+D)^{-1}=1-D+D^{2}-D^{3}+-
\end{aligned}
$$

P.I. (4) of $f(D) y=Q(x)$ when $Q(x)=e^{a x} V$ where ' a ' is a constant and V is function of x. where $V=\sin$ bx or \cos bx or x^{k}

Then P.I $=\frac{1}{f(D)} Q(x) \quad=\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$
$\rightarrow \frac{1}{f(D+a)} V$ can be evaluated depending on V using above P.I.s (2) to (3).
P.I. (5) of $f(D) y=Q(x)$ when $Q(x)=x V$ where $V=\sin x x$ or cosbx.

Then P.I $=\frac{1}{f(D)} Q(x)=\frac{1}{f(D)} x V=\left[x-\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} V$.

General Method of finding P.I.

$$
\begin{aligned}
& \text { P.I, } \mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} Q(x) \\
& \rightarrow \operatorname{Let} f(\mathrm{D})=\left(\mathrm{D}-\alpha_{1}\right)\left(\mathrm{D}-\alpha_{2}\right)\left(\mathrm{D}-\alpha_{3}\right) \ldots \ldots\left(\mathrm{D}-\alpha_{\mathrm{n}}\right) \\
& \rightarrow \mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} Q(x)=\frac{1}{\left(\mathrm{D}-\mathrm{a}_{1}\right)\left(\mathrm{D}-\mathrm{a}_{2}\right)\left(\mathrm{D}-\mathrm{a}_{3}\right) \ldots \ldots\left(\mathrm{D}-\mathrm{a}_{\mathrm{n}}\right)} Q(x) \\
& \\
& =\frac{A_{1}}{\left(D-\alpha_{1}\right)}+\frac{A_{2}}{\left(D-\alpha_{2}\right)}+\ldots \ldots \ldots . .+\frac{A_{n}}{\left(D-\alpha_{n}\right)} \text { and simplify each term using the }
\end{aligned}
$$

following $\frac{1}{D-\alpha} Q(x)=e^{\alpha x} \int e^{-\alpha x} Q(x) d x$.
Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$
\rightarrow Consider $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0$, let its solution i.e. Complementary Function be

$$
\mathrm{y}_{\mathrm{c}}=\mathrm{C}_{1} \mathrm{u}(\mathrm{x})+\mathrm{C}_{2} \mathrm{v}(\mathrm{x})
$$

\rightarrow Let the Particular Integral be $y_{p}=A(x) u(x)+B(x) v(x)$, where $A(x)$ and $B(x)$ are to be found.
\rightarrow Find $u \frac{d v}{d x}-v \frac{d u}{d x}$
$\rightarrow \mathrm{A}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$ are given by

$$
A(x)=-\int\left(\frac{v R}{u \frac{d v}{d x}-v \frac{d u}{d x}}\right) d x \text { and } B(x)=\int\left(\frac{u R}{u \frac{d v}{d x}-v \frac{d u}{d x}}\right) d x
$$

\rightarrow The general solution is $y=y_{c}+y_{p}=C_{1} u(x)+C_{2} v(x)+A(x) u(x)+B(x) v(x)$.

Unit III : Laplace Transforms

Laplace Transform:

Let $F(\mathrm{t})$ be a function defined for all positive values of t, then the Laplace transform of $\mathrm{F}(\mathrm{t})$ denoted by $\mathrm{L}\{F(\mathrm{t})\}$ or $f(s)$ is defined by
$L\{F(t)\}=f(s)=\int_{0}^{\infty} e^{-s t} F(t) d t$

Here, $\mathrm{F}(\mathrm{t})$ is said to be inverse laplace transform of $f(s)$, which is written as $F(t)=L^{-1}\{f(s)\}$.

The symbol 'L' is called the laplace transform operator. The function $F(\mathrm{t})$ must satisfy the following conditions for the existence of the laplace transform.
(a) The function $F(\mathrm{t})$ must be piece-wise continuous in any limited interval $0<\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$.
(b) The function $F(\mathrm{t})$ is of exponential order.

Standard Formulae

$\mathrm{L}\{1\}=\frac{1}{s}$
$\mathrm{L}\{\mathrm{k}\}=\frac{k}{s}$
$\mathrm{L}\{\mathrm{t}\}=\frac{1}{s^{2}}$
$\mathrm{L}\left\{\mathrm{t}^{\mathrm{n}}\right\}=\frac{n!}{s^{n+1}}$

$$
\begin{aligned}
& \mathrm{L}\left\{\mathrm{e}^{\mathrm{at}}\right\}=\frac{1}{s-a} \\
& \mathrm{~L}\left\{\mathrm{e}^{-\mathrm{at}}\right\}=\frac{1}{s+a} \\
& \mathrm{~L}\{\operatorname{cosat}\}=\frac{s}{s^{2}+a^{2}} \text { if } \mathrm{s}>0 \\
& \mathrm{~L}\{\text { sinat }\}=\frac{a}{s^{2}+a^{2}} \text { if } \mathrm{s}>0 \\
& \mathrm{~L}\{\text { coshat }\}=\frac{s}{s^{2}-a^{2}} \\
& \mathrm{~L}\{\text { sinhat }\}=\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

1. First shifting theorem:

If $L\{F(t)\}=f(s)$ then $L\left\{e^{a t} F(t)\right\}=f(s-a)$

Note: Unit Step Fucntion (OR) Heaviside's unit Function:

The unit step function is defined by $\mathrm{H}(\mathrm{t}-\mathrm{a})$ or $\mathrm{U}(\mathrm{t}-\mathrm{a})=\left\{\begin{array}{l}0, \text { if } \mathrm{t}<\mathrm{a} \\ 1, \text { if } \mathrm{t}>\mathrm{a}\end{array}\right.$

2. Second shifting theorem:

If $L\{F(t)\}=f(s)$ then $L\{F(t-a) H(t-a)\}=e^{-a s} f(s)$.
(or)
If $L\{F(t)\}=f(s)$ and $\mathrm{g}(\mathrm{t})= \begin{cases}F(t-a) & \text { if } t>a \\ 0 & \text { if } t<a\end{cases}$
then $L\{g(t)\}=e^{-a s} f(s)$.

3. Change of scale property:

If $L\{F(t)\}=f(s)$ then $L\{F(a t)\}=\frac{1}{a} f\left(\frac{s}{a}\right)$

4. Laplace transform of Derivatives:

If $L\{F(t)\}=f(s)$ then

5. Laplace transorm of Integrals:

If $L\{F(t)\}=f(s)$ then $L\left\{\int_{0}^{t} F(u) d u\right\}=\frac{1}{s} f(s)$
similarly $L\left\{\int_{0}^{t} \int_{0}^{t} F(u) d u d u\right\}=\frac{1}{s^{2}} f(s)$ and so on

6. Laplace transform of 'Multiples of t ':

If $L\{F(t)\}=f(s)$ then $L\left\{t^{n} F(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} f(s)$

7. Laplace transform of 'Division by t ':

If $L\{F(t)\}=f(s)$ then $L\left\{\frac{F(t)}{t}\right\}=\int_{s}^{\infty} f(s) d s$

8. Laplace transform of Periodic function:

Note: A function $\mathrm{F}(\mathrm{t})$ is said to be periodic of period T if $F(t)=F(t+T)=F(t+2 T)=\ldots \ldots .$.
Ex: sint and cost are periodic functions of 2π.
If $F(\mathrm{t})$ is a periodic function of period T then $L\{F(t)\}=\frac{1}{1-e^{-s T}} \int_{s}^{T} e^{-s t} F(t) d t$.

INVERSE LAPLACE TRANSFORM

If $f(\mathrm{~s})$ is the Laplace transform of a function $F(\mathrm{t})$ then $F(\mathrm{t})$ is called the inverse laplace transform of $f(\mathrm{~s})$ and it is denoted by $F(t)=L^{-1}\{f(s)\}$
where L^{-1} is called the inverse Laplace transform operator.

Table of Inverse Laplace transform:

S.no	$\boldsymbol{f (\mathbf { s })}$	$\mathbf{L}^{-1}\{\mathbf{f}(\mathbf{s})\}=\boldsymbol{F}(\mathbf{t})$
1	$\frac{1}{s}$	1
2	k	$K s$
3	$\frac{1}{s^{n+1}}$	$\frac{t^{n}}{n!}$
4	$\frac{1}{s-a}$	$e^{a t}$
5	$\frac{1}{s+a}$	$e^{-a t}$
6	$\frac{1}{s^{2}+a^{2}}$	$\frac{1}{a} \operatorname{sinat}$
7	$\frac{s}{s^{2}+a^{2}}$	$\cos a t$
8	$\frac{1}{s^{2}-a^{2}}$	$\frac{1}{a} \operatorname{sinhat}$

9	$\frac{s}{s^{2}-a^{2}}$	coshat

Note: In finding Inverse Laplace transorm, it is required to use Partial Fractions.
Tips for partial fractions:

1. $\frac{1}{(s-a)(s-b)}=\frac{1}{(a-b)}\left(\frac{1}{(s-a)}-\frac{1}{(s-b)}\right) \frac{1}{\left(s^{2}-a\right)\left(s^{2}-b\right)}=\frac{1}{(a-b)}\left(\frac{1}{\left(s^{2}-a\right)}-\frac{1}{\left(s^{2}-b\right)}\right)$
2. $\frac{1}{\left(s^{2}-a\right)\left(s^{2}-b\right)}=\frac{1}{(a-b)}\left(\frac{1}{\left(s^{2}-a\right)}-\frac{1}{\left(s^{2}-b\right)}\right)$
3. $\frac{1}{\left(s^{n}-a\right)\left(s^{n}-b\right)}=\frac{1}{(a-b)}\left(\frac{1}{\left(s^{n}-a\right)}-\frac{1}{\left(s^{n}-b\right)}\right)$

In general use the following initial steps to resolve into partial fractions:

1. $\frac{1}{(s+a)(s+b)}=\frac{A}{s+a}+\frac{B}{s+b}$
2. $\frac{1}{s(s+a)(s+b)}=\frac{A}{s}+\frac{B}{s+a}+\frac{C}{s+b}$
3. $\frac{1}{(s+a)\left(s^{2}+b\right)}=\frac{A}{s+a}+\frac{B c+D}{s^{2}+b}$
4. $\frac{1}{\left(s^{2}+a\right)\left(s^{2}+b\right)}=\frac{A s+B}{\left(s^{2}+a\right)}+\frac{C s+D}{\left(s^{2}+b\right)}$
5. $\frac{1}{(s+a)(s+b)^{2}}=\frac{A}{(s+a)}+\frac{B}{(s+b)}+\frac{C}{(s+b)^{2}}$
6. $\frac{1}{\left(s^{2}+a\right)(s+b)^{2}}=\frac{A s+B}{\left(s^{2}+a\right)}+\frac{C}{(s+b)}+\frac{D}{(s+b)^{2}}$

1. First shifting theorem (Inverse):

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\{f(s-a)\}=e^{a t} F(t)$.

2. Second shifting theorem(Inverse):

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\left\{e^{-a s} f(s)\right\}=F(t-a) H(t-a)$.
(or)
If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\left\{e^{-a s} f(s)\right\}=G(t)$
where $\mathrm{G}(\mathrm{t})= \begin{cases}F(t-a) & \text { if } t>a \\ 0 & \text { if } t<a\end{cases}$

3. Change of scale property(Inverse):

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\{f(a s)\}=\frac{1}{a} F\left(\frac{t}{a}\right)$.

4. Inverse LT of Derivatives:

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\left\{f^{(n)}(s)\right\}=(-1)^{n} t^{n} F(t)$, where $f^{(n)}(s)=\frac{d^{n}}{d s^{n}}[f(s)]$.

5. Inverse LT of Integrals:

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\left\{\int_{0}^{\infty} f(s) d s\right\}=\frac{F(t)}{t}$.

6. Inverse L T of 'Multiples of s ':

If $L^{-1}\{f(s)\}=F(t)$ and $f^{(n)}(0)=0$ for $n=0,1,2, \ldots n-1$ then $L^{-1}\left\{s^{n} f(s)\right\}=F^{(n)}(t)$.

7. Inverse L T of 'Division by s':

If $L^{-1}\{f(s)\}=F(t)$ then $L^{-1}\left\{\frac{f(s)}{s}\right\}=\int_{0}^{t} F(u) d u$
Def: Convolution: If $\mathrm{F}(\mathrm{t}), \mathrm{G}(\mathrm{t})$ are two functions then convolution of the two functions is defined by
$\mathrm{F}(\mathrm{t}) * \mathrm{G}(\mathrm{t})=\int_{0}^{t} F(u) G(t-u) d u$.

8. Convolution Theorem:

If $\mathrm{L}\{\mathrm{F}(\mathrm{t})\}=f(\mathrm{~s})$ and $\mathrm{L}\{\mathrm{G}(\mathrm{t})\}=g(\mathrm{~s})$ then

$$
\begin{gathered}
\mathrm{L}\{\mathrm{~F}(\mathrm{t}) * \mathrm{G}(\mathrm{t})\}=f(\mathrm{~s}) . g(\mathrm{~s}) \quad(\mathbf{o r}) \\
L^{-1}\{f(\mathrm{~s}) \cdot g(\mathrm{~s})\}=\mathrm{F}(\mathrm{t}) * \mathrm{G}(\mathrm{t}) .
\end{gathered}
$$

Application of Laplace Transform in solving Differential Equation:

Consider a linear differential equation
$\frac{d^{n} Y}{d t^{n}}+\mathrm{P}_{1} \frac{d^{n-1} Y}{d t^{n-1}}+\mathrm{P}_{2} \frac{d^{n-2} Y}{d t^{n-2}}+\cdots \cdots+\mathrm{P}_{\mathrm{n}-1} \cdot \frac{d Y}{d t}+\mathrm{P}_{\mathrm{n}} . \mathrm{Y}=\mathrm{Q}(\mathrm{t})$
i.e. $Y^{(n)}+\mathrm{P}_{1} Y^{(n-1)}+\mathrm{P}_{2} Y^{(n-2)}+\cdots-----+\mathrm{P}_{\mathrm{n}-1} . Y^{\prime}+\mathrm{P}_{\mathrm{n}} . Y=\mathrm{Q}(\mathrm{t})$ \qquad
where $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots . \mathrm{P}_{\mathrm{n}}$, are real constants and $\mathrm{Q}(\mathrm{t})$ is a continuous function of t with initial conditions $Y(0)=c_{0}, Y^{\prime}(0)=c_{1}, \ldots \ldots . . . Y^{n-1}(0)=c_{n-1}$.
working rule:
(1) Take laplace transform on both sides of (1)
(2) use the formulae

$$
\begin{aligned}
& L\left\{Y^{\prime}(t)\right\}=s y(s)-Y(0) \\
& L\left\{Y^{\prime \prime}(t)\right\}=s^{2} y(s)-s Y(0)-Y^{\prime}(0) \\
& : \\
& : \\
& L\left\{Y^{n}(t)\right\}=s^{n} y(s)-s^{n-1} Y(0)-s^{n-2} Y^{\prime}(0) \ldots . .-Y^{n-1}(0)
\end{aligned}
$$

(3) put $Y(0)=c_{0}, Y^{\prime}(0)=c_{1}, \ldots \ldots . . Y^{n-1}(0)=c_{n-1}$
(4) Shift all terms with negative sign to right keeping $y(s)$ term alone left hand side.
(5) divide total equation by the coefficient of $y(s)$, keeping $y(s)$ alone left hand side and having a function of s on right hand side.
(6) Resolve the this function of s into partial fractions.
(7) Take Inverse Laplace Transform on both sides, that gives Y as a function of t, which is the required solution.

Unit IV : Vector Differentiation

Scalar point function:-

If to each point $p(x, y, z)$ of a region in space there corresponds a definite scalar $f(x, y, z)$ then ' f ' is called a scalar point function and the region in which the scalar quantity is specified is called a scalar field.
\Rightarrow Eg:- 1) Density of a body
2) Pressure of air in the earth's atmosphere.

Vector Point Function:-

If to each point $p(x, y, z)$ of a region in space there corresponds a definite. Vector $f(x, y, z)$ $=f(p)$, then f is called a vector point function \& the region in which ' f ' is specified, is called a Vector Field.
Eg:- In distribution of velocity at all points of a moving fluid, velocity represents vector point function.

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator ∇ (read as del) is defined as
$\nabla \equiv \bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}$. This operator possesses properties analogous to those of ordinary vectors as well as differentiation operator.

GRADIENT OF A SCALAR POINT FUNCTION

Let $\phi(x, y, z)$ be a scalar point function of position defined in some region of space. Then the vector function $\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$ is known as the gradient of ϕ or $\nabla \phi$

$$
\nabla \phi=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right) \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}
$$

Directional Derivative: The directional derivative of a scalar point function ϕ at a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in the direction of a unit vector e is equal to e. grad $\phi=\mathrm{e} . \nabla \phi$.

Level Surface:-

If $\phi(x, y, z)$ is a scalar point function which define a scalar field in a region R, the set of points $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in space where $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ constant is called a level surface of ϕ.

Eg:- $x^{2}+y^{2}+z^{2}=c^{2}, c>0$ is level surfaces of the scalar field $\phi(x, y, z)=\sqrt{ } x^{2}+y^{2}+z^{2}$
\Rightarrow Geometrically, if $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ represents a level surface of scalar field defined by $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, then
∇f or grad f represents a surface outward at the point P and has the magnitude equal to the rate of change of f along this normal.

DIVERGENCE OF A VECTOR

Let \bar{f} be any continuously differentiable vector point function. Then $\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}$ is called the divergence of \bar{f} and is written as $\operatorname{div} \bar{f}$.

$$
\text { i.e div } \bar{f}=\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right) \cdot \bar{f}
$$

hence we can write $\operatorname{div} \bar{f}$ as $\operatorname{div} \bar{f}=\nabla . \bar{f}$. This is a scalar point function.
$>$ A vector point function \bar{f} is said to be \bar{f} solenoidal if div $\bar{f}=0$.
CURL OF A VECTOR: Let \bar{f} be any continuously differentiable vector point function. Then the vector function defined by $\bar{i} x \frac{\partial \bar{f}}{\partial x}+\bar{j} x \frac{\partial \bar{f}}{\partial y}+\bar{k} x \frac{\partial \bar{f}}{\partial z}$ is called curl of \bar{f} and is denoted by curl \bar{f} or $(\nabla \mathrm{x} \bar{f})$.
$\operatorname{Curl} \bar{f}=\bar{i} x \frac{\partial \bar{f}}{\partial x}+\bar{j} x \frac{\partial \bar{f}}{\partial y}+\bar{k} x \frac{\partial \bar{f}}{\partial z}=\sum\left(\bar{i} x \frac{\partial \bar{f}}{\partial x}\right)$
$>\operatorname{curl} \bar{f}=\left|\begin{array}{lll}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{1} & f_{2} & f_{3}\end{array}\right|$
$>$ A vector \bar{f} is said to be Irrotational if curl $\bar{f}=\overline{0}$.
$>$ If \bar{f} is Irrotational, there will always exist a scalar function $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that $\bar{f}=\operatorname{grad} \phi$. This is called scalar potential of \bar{f}.

Unit V :Vector Integration

1. Line integral:- (i) $\int_{c}^{\bar{F}} \cdot d \bar{r}$ is called Line integral of \bar{F} along c

Note : Work done by \bar{F} along a curve c is $\int_{c} \bar{F} \cdot d \bar{r}$
2. Surface integral: $\int \overline{\operatorname{F}} . \bar{n} d s$ is called surface integral.
3. Volume integral : Let V be the volume bounded by a surface $\bar{r}=\bar{f}$ (u,v). Let $\bar{F}(\bar{r})$ be a vector point function define over V . Then the volume integral of $\bar{F}(\bar{r})$ in the region V is denoted by $\int_{V}^{-} \bar{F}(\bar{r}) d v$ or $\int_{V}^{-} \bar{F} d v$.

I. GAUSS'S DIVERGENCE THEOREM

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume v. if \bar{F} is a continuously differentiable vector point function, then

$$
\int_{V} d i v F d v=\int_{s}^{-\bar{F}} \cdot \bar{n} \mathrm{~d} S
$$

When n is the outward drawn normal vector at any point of S.

II. GREEN'S THEOREM IN A PLANE

(Transformation Between Line Integral and doouble Integral)

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions of x and y having continuous derivatives in R, then
,$\oint_{C} M d x+N d y=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Where C is traversed in the positive(anti clock-wise) direction.

III. STOKE'S THEOREM

(Transformation between Line Integral and Surface Integral)
Let S be a open surface bounded by a closed, non intersecting curve G. if \bar{F} is any differentiable vector point function then $\oint_{C} \bar{F} \cdot d \bar{r}=\int_{S} \operatorname{curl} \bar{F} \cdot \bar{n} d s$ where C is traversed in the positive direction and \bar{n} is unit outward normal vector at any point of the surface.

UNIT WISE QUESTION BANK

UNIT - I: First Order ODE

I. Short Answer questions

1.Solve $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}=1$
2. Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
3. Find the orthogonal trajectory of the family of curves $a y^{2}=x^{3}$, where a is variable
parameter.
4. The number x of bacteria in a culture grow at a rate proportional to x. The value of x was initially 50 and increased to 150 in one hour what will be the value of x after $1 \frac{1}{2}$ hour.
5. Write the statements of Newton's Law of cooling, Natural growth and Decay.

II. Long answer Questions

1. Solve $x \frac{d y}{d x}+y=\log x$
2. Solve $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$
3. Solve $\left(1+2 x y \cos x^{2}-2 x y\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0$
4. Solve $\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$
5. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
6. Solve $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$
7. Solve $(y \log y) d x+(x-\log y) d y=0$
8. Solve $2 x y d y-\left(x^{2}-y^{2}+1\right) d x=0$
9. If the temperature of air is $20^{\circ} \mathrm{C}$ and the temperature of the body drops from $100^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 10 minutes, what will be its temperature after 20 minutes? When will the temperature be $40^{\circ} \mathrm{c}$?

III. Each question carries $1 / 2$ mark.

1. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ under the condition that $\mathrm{y}=1$ when $x=1$ is
a) $4 x y=x^{3}+3$
b) $4 x y=x^{4}+3$
c) $4 x y=y^{4}+3$
d) None
2. The family of straight lines passing through the origin is represented by the differential equation
a) $y d x+x d y=0 \quad b) x d y-y d x=0$
c) $x d x+y d x=0 d) y d y-x d x=0$
3. The differential equation satisfying the relation $x=A \cos (m t-\alpha)$ is []
a) $\frac{d x}{d t}=1-x^{2}$
b) $\frac{d^{2} x}{d t^{2}}=-\alpha^{2} x$
c) $\frac{d^{2} x}{d t^{2}}=-m^{2} x$
D) $\frac{d x}{d t}=-m^{2} x$
4. The equation $\frac{d y}{d x}+\frac{a x+h y+g}{h x+b y+f}=0$ is
a) Homogeneous
b) Variable separable c) Exact
d) None
5. Find the differential equation of the family of cardioids $r=a(1+\cos \theta)$ is
a) $\frac{d r}{d \theta}+r \sin x=0$
b) $\frac{d r}{d \theta}+r \tan \left(\frac{\theta}{2}\right)=0$
c) $\frac{d r}{d \theta}+r \sin \left(\frac{\theta}{2}\right)=0$
d) None

UNIT-II : Ordinary Differential Equations of Higher Order

I. Short Answer questions

1 Solve $D^{2}\left(D^{2}+9\right)=\sin 2 x+5$
2. Solve $D(D+5)+6=100$
3. Find the value of $\frac{1}{D^{2}+4} \sin 2 x$
4. Find C.F of $(D+1)(D-2)^{2} y=e^{3 x}$.

II. Long answer Questions

1) Solve $\left(D^{2}+1\right) y=\cos x$ by the method of variation of parameters.
2) Solve $\frac{d^{3} y}{d x^{x}}+y=e^{-x}+x^{3}+e^{x} \sin x$.
3) Solve $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$
III. Each question carries $1 / 2$ mark.
4) $\frac{1}{f(D)}[x v(x)]=$ \qquad
5) The solution of the D.E. $\left(D^{3}+3 D\right) y=0$ is \qquad
6) $\frac{e^{-x}}{(D+1)^{2}}=$
a) $\frac{x e^{-x}}{2}$
b) $\frac{e^{-x}}{4}$
c) $\frac{e^{-x}}{2}$
d) $\frac{x^{2} e^{-x}}{2}$
7) $\frac{1}{D+1}\left(1+e^{x}\right)=$
(a) $\operatorname{Cos} x$
(b) $\sin x$
(c) $\operatorname{cosec} x$
(d) $\sec x$

UNIT - III: Laplace Transforms

I.Short Answer questions

1. Define Laplace transform of a function.
2. Define inverse Laplace transform of a function.
3. Define convolution of two functions.
4. Prove that $\mathrm{L}[\mathrm{t}]=\frac{1}{s^{2}}$
5. Prove that $\mathrm{L}\left[\mathrm{t}^{\mathrm{n}}\right]=\frac{n!}{s^{n+1}}$
6. Find $\mathrm{L}\left[e^{a t}\right]$

7. Find L[sin at]

8. Prove that the function $f(t)=7^{2}$ is exponential order 3 .
9. Find $L[\sin (w t+\alpha)]$
10.Find $\mathrm{L}[\sin 2 \mathrm{t}+\cos 3 \mathrm{t}] \mathrm{g}$ to polar coordinates

II. Long answer Questions

1. Find $L^{-1}\left[\frac{s}{s^{4}+4 a^{4}}\right]$
2. Find $L^{-1}\left[\frac{s+3}{s^{2}-10 s+29}\right]$
3. Find $L^{-1}\left[\frac{s}{s^{2}-a^{2}}\right]$
4. Find $L^{-1}\left[\frac{1+e^{-\pi s}}{s^{2}+1}\right]$
5. Using Laplace transforms method, solve $\left(D^{2}+1\right) y=6 \cos 2 t, t>0$
6. Using Laplace transforms, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t$, given that $\mathrm{y}(0)=0, \mathrm{y}^{1}(0)=1$

III Each question carries $1 / 2$ mark.

1. $L^{-1}[1]=$
a) $\delta \mathrm{t}$
b) 1
c) 0
d) $\delta(t-1)$
2. $L\left[t e^{-a t}\right]=$
a) $\frac{-1}{(s-a)^{2}}$
b) $\frac{1}{(s-a)^{2}}$
c) $\frac{1}{(s+a)^{2}}$
d) $\frac{-1}{(s+a)^{2}}$
3. If $L[f(t)]=\frac{3 s}{6 s^{2}+24}, f(t)=$
a) $\frac{1}{2} \cos 2 t$
b) $\frac{1}{3} \cos 2 t$
c) $\frac{1}{3} \sin 2 t$
d) $\frac{1}{2} \sin 2 t$
4. $L^{-1}\left[\frac{2 s}{(s+1)^{2}}\right]=$
a) tcost
b) -tsint
c) $-t \cos t$
d) $\operatorname{tsin} t$
5. $L\left[\int_{0}^{t} \frac{\sin t}{t} d t\right]=$
a) $\tan ^{-1}(\mathrm{~s})$
b) $\cot ^{-1} \mathrm{~s}$
c) $\frac{\tan ^{-1} s}{s}$
d) $\frac{\cot ^{-1} s}{s}$

UNIT - IV: Vector Differentiation

I. Short Answer questions

1. If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+\lambda z) \bar{k}$ is solenoidal, find the value of λ.
2. Define irrotational, Solenoidal
3. Write the formulas of Curl, Div, Gradient

II. Long answer Questions

1. Find the work done in moving a particle in the force field $\bar{F}=3 x^{2} \bar{i}+(2 x z-y) \bar{j}+z \bar{k}$.
2. Show that the vector $\bar{f}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.
3. If Φ and Ψ are scalar functions, then prove that $\nabla \Phi \times \nabla \Psi$ is solenoidal.

III. Each question carries $1 / 2$ mark.

1.

$$
\text { If } \bar{r}=x \bar{i}+y \bar{j}+z \bar{k} \text {, then } \operatorname{curl} \bar{r}=
$$

a) $\overline{0}$
b) 0
c) 1
d) 3
2. If $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$, then $\nabla^{2}(\log r)=$
a) 0
b) 0
c) $\frac{1}{r^{2}}$
d) $x+y+z$
3. Physical interpretation of $\nabla \Phi$ is that \qquad .

UNIT - V: Vector Integration

I.Short Answer questions

1. If $\bar{F}=3 x y \bar{i}-y^{2} \bar{j}$ evaluate $\int_{C} \bar{F} \cdot \overline{d r}$ where C is the curve $y=2 x^{2}$ in the XY-plane from $(0,0)$ to $(1,2)$
2. Using Green's theorem evaluate $\int_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.
3. If $\bar{F}=y \bar{i}+(x-2 x z) \bar{j}-x y \bar{k}$, evaluate $\int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s$ using Stokes theorem, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, above the XY-plane.

II. Long answer Questions

1. Verify Gauss's divergence theorem for $2 x^{2} y \bar{i}-y^{2} \bar{j}+4 x z^{2} \bar{k}$ taken over the region of the first octant of the cylinder $y^{2}+z^{2}=9$ and $x=2$.
2. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is bounded by $y=x$ and $y=x^{2}$.
3. Verify Stokes theorem for $\bar{F}=(2 x-y) \bar{i}-y z^{2} \bar{j}+y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by projection of the xy-plane.

III. Each question carries $1 / 2$ mark.

1. For any closed surface $\mathrm{S}, \iint_{S} \operatorname{curl} \overline{\mathrm{~F}} \cdot \bar{n} d s=$
a) $\oint \bar{F} \cdot \overline{d r}$
b) 0
c)
1
d) $\oint \bar{F} \times \overline{d r}$
2. If $\oint \bar{F} \cdot \overline{d r}$ is independent of the path joining any two points if and only if it is \qquad .
3. The value of $\int_{S} \bar{r} \cdot \bar{n} d S$ is \qquad
